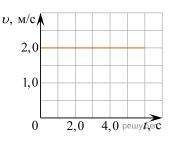
Централизованный экзамен по физике, 2023

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4 \pm 0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1) плотность;

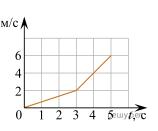

2) площадь;

3) инерция;

4) линейка;

5) динамометр.

2. График зависимости модуля скорости υ тела от времени t изображён на рисунке. Путь s, пройденный телом за промежуток времени $\Delta t = 2.0$ с, равен:



1) 2,0 m; 2) 4,0 m; 3) 8,0 m;

4) 16,0 м;

5) 32,0 м.

3. Тело движется вдоль оси Ox. График зависимости проекции скорости v_x тела от времени t изображён на рисунке. Если масса тела m=1 кг, то в момент времени t=4 с модуль результирующей сил F, действующих на тело, равен:

1) 1 H;

2) 2 H;

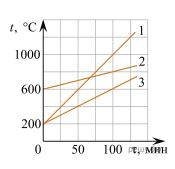
3) 3 H;

4) 4 H;

5) 5 H.

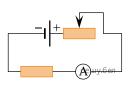
4. Единицей абсолютной температуры в СИ является:

1) джоуль;


2) моль;

паскаль;

4) кельвин;

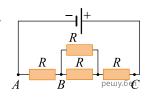

5) ватт.

5. На рисунке изображён график зависимости температуры t от времени τ для трёх тел (1, 2 и 3) одинаковой массы, помещённых в печь. Если каждому из тел ежесекундно сообщалось одно и то же количество теплоты, то для удельных теплоёмкостей веществ c_1 , c_2 и c_3 этих тел выполняется соотношение:

1) $c_1 < c_2 = c_3$ 2) $c_1 = c_3 < c_2$ 3) $c_1 < c_3 < c_2$ 4) $c_2 < c_3 < c_1$ 5) $c_3 = c_2 < c_1$

6. На рисунке изображена схема электрической цепи. Из перечисленного ниже выберите элементы, присутствующие в электрической цепи:

1) вольтметр;

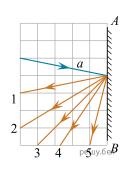

2) источник тока;

3) реостат;

4) лампа накаливания;

5) резистор.

7. Электрическая цепь состоит из источника тока и четырёх одинаковых резисторов сопротивлением R каждый (см. рис.). Если между точками A и C напряжение $U_{AC}=12$ В, то напряжение U_{BC} между точками B и C равно:



1) 3,0 B; 2) 4,0 B; 3) 7,2 B;

4) 8,4 B;

5) 10 B.

8. Световой луч a падает на поверхность плоского зеркала AB. Отражённый от зеркала световой луч обозначен на рисунке цифрой:

1) 1; 2) 2; 3) 3;

5) 5.

9. Если при переходе атома водорода из одного стационарного состояния в другое был испущен квант электромагнитного излучения частотой $v = 4,6 \cdot 10^{14} \, \Gamma$ ц, то модуль разности энергий $|\Delta E|$ атома водорода в этих стационарных состояниях равен:

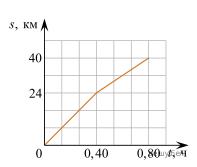
1) 13.6 ₉B:

2) 11.3 эВ:

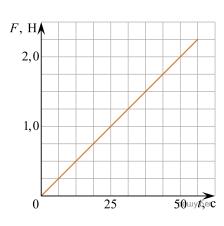
3) 9.4 ₃B:

4) 7.8 ₉B:

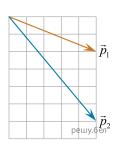
10. Количество протонов в ядре атома лития ${}_{3}^{7}$ Li равно:


1) 3;

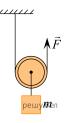
2) 4;


3) 7;

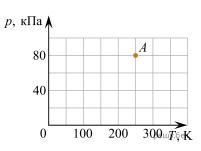
4) 10;


11. На рисунке представлен график зависимости пути s от времени t движения автобуса на двух различных участках дороги. Средняя скорость и движения автобуса на всём пути равна ... КМ

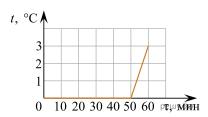
- 12. Автомобилист и мотоциклист движутся с постоянными скоростями в одном направлении по прямолинейному участку шоссе. Автомобилист, модуль скорости которого $\upsilon_1 = 80 \; \frac{^{\rm KM}}{^{\rm H}},$ обгоняет мотоциклиста, модуль скорости которого $\upsilon_2 = 56 \; \frac{^{\rm KM}}{^{\rm H}}.$ Через промежуток времени $\Delta t = 30$ мин с момента обгона расстояние l между автомобилистом и мотоциклистом станет равным ... КМ.
- 13. Материальная точка массой m = 2,0 кг движется вдоль оси Ox. Если кинематический закон движения материальной точки имеет вид $x(t) = A + Bt + Ct^2$, где A = 2.0 м, B = 2.0 $\frac{\text{M}}{c}$, C = 1.0 $\frac{\text{M}}{c^2}$, то кинетическая энергия E_{K} материальной точки в момент времени t = 2.0 с равна ... Дж.
- **14.** Тело массой m=726 г двигалось по гладкой горизонтальной поверхности со скоростью $\upsilon_0=1,0$ $\frac{\rm M}{c}.$ В момент времени $t_0=0$ с на тело в направлении его движения начинает действовать сила \vec{F} , модуль которой линейно зависит от времени (см. рис.). Скорость тела достигнет значения $v = 31 \, \frac{\mathrm{M}}{c}$ в момент времени t, равный ... c.

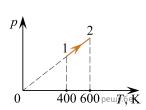


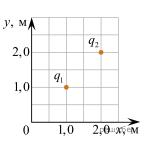
15. Камень бросили горизонтально. В момент времени $t_1=1,0$ с импульс камня был \vec{p}_1 , а в момент времени $t_2=3,0$ с импульс камня стал \vec{p}_2 (см. рис.). В момент броска ($t_0=0$ с) модуль начальной скорости v_0 камня был равен ... $\frac{M}{c}$.

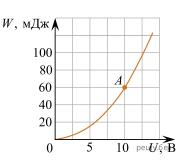


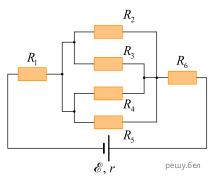
16. Вокруг планеты по круговым орбитам движутся два спутника. Радиус орбиты первого спутника в k=2,25 раза больше радиуса орбиты второго спутника. Если период обращения первого спутника $T_1=43,9$ суток, то период обращения T_2 второго спутника равен ... суток (сутки).


17. Груз массой m=7,2 кг равномерно поднимают с помощью подвижного блока (см. рис.). Если коэффициент полезного действия блока $\eta=80$ %, то модуль силы F, приложенной к свободному концу верёвки, равен ... H.

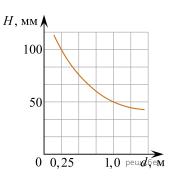

18. В p—T-координатах точкой A отмечено состояние идеального газа, количество вещества которого v=1,0 моль. Объём V газа в этом состоянии равен ... л.


- **19.** Вечером при температуре воздуха $t_1=11,0$ °C относительная влажность воздуха была $\phi=68\%$. Ночью температура понизилась до $t_2=2,0$ °C. Если плотность насыщенного водяного пара при температурах t_1 и t_2 равна соответственно $\rho_{\rm H1}=10,0$ $\frac{\Gamma}{{
 m M}^3}$ и $\rho_{\rm H2}=5,6$ $\frac{\Gamma}{{
 m M}^3}$, то из воздуха объемом V=30 м 3 выпала роса массой m, равной ... г.
- **20.** Если в тепловом двигателе газ совершил за один цикл работу в n=6,7 раза меньше количества теплоты, отданного холодильнику, то термический коэффициент полезного действия η теплового двигателя равен ... %.
- **21.** В открытом сосуде находится смесь воды и льда (удельная теплоёмкость воды $c=4200~\frac{\text{Дж}}{\text{кг}\cdot{}^{\circ}\text{C}}$, удельная теплота плавления льда $\lambda=3,4\cdot10^5~\frac{\text{Дж}}{\text{кг}}$). Масса льда в смеси $m_{\pi}=63,0$ г. Сосуд внесли в тёплую комнату и сразу же начали измерять температуру содержимого сосуда. График зависимости температуры t смеси от времени τ изображён на рисунке. Если количество теплоты, ежесекундно передаваемое смеси, постоянно, то общая масса $m_{\text{см}}$ смеси в начальный момент времени была равна ... г.


22. Идеальный одноатомный газ перевели из состояния 1 в состояние 2 (см. рис.). Если при этом газ получил количество теплоты Q=27.4 кДж, то количество вещества газа v равно ... моль.


23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 28$ нКл и $q_2 = -80$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{B}{M}$.

24. График зависимости энергии электростатического поля W конденсатора от напряжения U между его обкладками представлен на рисунке. Точке A на графике соответствует заряд конденсатора q, равный ... мКл.



- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 27.4$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0.50 Ом, и резистора сопротивлением R=6.0 Ом. Если сила тока в цепи I=2.0 А, то ЭДС $\mathcal E$ источника тока равна ... В.
- **27.** На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов $R_1=R_2=R_3=R_4=R_5=R_6=16$ Ом. Если ЭДС источника тока $\mathcal{E}=291$ В, а его внутреннее сопротивление r=6,0 Ом, то мощность P_5 , выделяемая в резисторе R_5 , равна ... Вт.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=7,2\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из катушки и конденсатора, ёмкость которого C=50 мкФ, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^3 \, \frac{\mathrm{pag}}{\mathrm{c}}$, то индуктивность L катушки равна ... мГн.
- **30.** График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Высота h карандаша равна ... см.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

